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Abstract  

Some properties of the Hamiltonian description of free spin-two massive and massless 
particles are given emphasizing the connection with symmetric spinors having four free 
indices. In addition, the most general scattering amplitude is constructed for the elastic 
scattering of massive spin-two particles and scalar particles including the massless limit. 

1. Introduction 

Weaver, Hammer, and Good (1964) (WHG) have given a Hamiltonian formu- 
lation of  the theory of  a free particle and antiparticle with arbitrary mass and spin 
S = 0, ½, 1 . . . . .  The basis of  their approach is to represent the spin S particle 
by the (S, O) and (O, S) representations o f  the homogeneous Lorentz group. 
The usefulness of  these representations has been discussed from other points 
of  view by Joos (1962) and Weinberg (1964), and a review has been given by  
Nelson and Good (1968). 

To construct the Hamfltonians in WHG, the Fotdy-Wouthuysen (FW) trans- 
formation (1950) was generalized to arbitrary spin, but in a way that is not 
unitary (see footnote 1) except for spin ½. Eater Weaver (1968) found a unitary 
transformation for spin-1 with many of the properties of the generalized FW 
transformation. 

Investigating the description of  WHG further, Weaver and Fradkin (1965) 
showed that the wavefunction, which has 2(2S + 1) components for spin S, 
was formed from the independent components o f  two symmetric spinors, 
each with 2S double-valued indices, and related by a spinor wave equation. 

The purpose of  this paper is to examine explicitly the spin-2 specialization 
of  the general description including the connection with the symmetric spinors 
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and the massless limit. A further purpose is to construct the scattering amplitude 
consistent with Lorentz invariance and invariance with respect to space and time 
reflection and charge conjugation for the elastic scattering of massive spin-two 
particles and scalar particles, including the massless limit. 

In contrast to conventional treatments, the massive spin-two particles will be 
represented by symmetric spinor field operators. This simplifies the construction, 
particularly the massless limit because no additional constraints (the spin-2 
analogue of gauge invariance) need be imposed. 

It should be emphasized that there are difficulties in taking the massless 
limit when one needs to deal with the nonlinear aspects of the spin two field 
found in nature, the gravitational field, but the difficulties do not appear in 
the present work (see, for example, van Dam and Veltman (1970), Boulware 
and Deser (1972) and van Nieuwenhuizen (1973)). 

2. Description of  a Spin-Two Particle 

Following Weaver et aL (1964) the wavefunction 4(x), representing a 
particle and antiparticle of mass m and spin-2, is 10-dimensional and satisfies 
the wave equation 

H~(x) = i -~ ~(x) (2.1) 

The units are h = C = 1 and X = (X, it). In terms of the momentum operator 
P = - iV,  the energy operator E = x/(P .P + m z) and the 10 x 10 matrices 

(with S the representation of spin matrices with S 3 diagonal) the Hamiltonian 
operator H is given by 

H/E = tanh[4 tanh-l(P/E)a. P] + ~ sech[4 tanh-l(p/E)~. P] (2.3) 

Note that H is a Hermitian matrix, and that H 2 = E 2 so that ~(x) satisfies the 
Klein-Gordon equation for mass m. 

With respect to the homogeneous Lorentz group, 4(x) transforms as the 
direct sum of the (0, 2) and (2, 0) representations, corresponding respectively 
to symmetric spinors with 4 lower-dotted indices and symmetric spinors with 
4 upper-undotted indices. In detail, let X and ~o be the symmetric spinors 
appropriate for spin two objects (see footnote 2). Then, up to factors which 
are Lorentz scalars, the wavefunction 4(x) and the symmetric spinors are 
related by 

41 = x i i i i ,  4z = 2xii i~,  43 = x/(6)xii~fi, 44 = 2 x i ~ ,  

~b s = x ~ ,  ~6 =¢1112, 47 = 2~ 01112, 48 = X/(6)~ °1122 , 

49 = 2~ 01z22, 41o = ~2222 (2.4) 

z A symmetric spinor with four indices has five independent components and is appro- 
priate for describing a spin-two particle. 
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In terms of momentum spinors and second-quantized operator coefficients, 
the symmetric spinors are given by 

1 f d 3 P  [ E + m + a . P ]  
~la2~3~a(X) = (2rr) 3/2 Jx/(ZE) [2(E+ m)] 2 ~1~1 [E + m + n.  PLY2& x 

a 

[E +/ 'n + •. P]a3t33 [E + m + n .  P]~4/34 ~ u/31~32/33t34(P , k) × 

k = - 2  

[a(P, k)e ~P,x + ( - l ) a - / c t b ( P 1  - k)e -iP.x ] (2.5) 

and a similar expression for ~0ala2a3c~4(x) with ~. P replaced everywhere by 
- a .  P. Here a and bt  are, respectively, the destruction and creation operators 
for particle and antiparticle; ~ are the representation of Pauli matrices with 
% diagonal; k is the polarization quantum number, taking on values from - 2  
to 2 in integer steps, and U(P, k) are the momentum-polarization spinors 
appropriate for spin-two (see footnote 3). The Lorentz invariant scalar product 
P .  x is P. x - Ft. The momentum-polarization spinors have the property 

[P + ~- Ply, ~ [P + a.  P]%& [P -+ a. P]%~3 [P -+ ~" Plaafi4 U&&/33~4 (p 'k)  = 0 

(2.6) 

unless k = +2, respectively. This leads, in the limit that the particle mass goes 
to zero, to the following pair of symmetric spinors appropriate for describing a 
massless, spin-two particle and antiparticle 

X~,~26~a~g(X) -(27r¢3/2 fd3p(2P) 3/z Ualo~2a3oL4(P, 2)[a(P,2)eip'x + 

b* (P, -2 )  e-iP" x ] (2.7) 
_ 1 F 

~0~1~=~3~4(x) (2rr~3/= jd3p(2P)a/2 U~,~i~a~4(~,-2)[a(P,-2)e iP'x + 

bt(P, 2)e - iPx ] (2.8) 

Being interested in the massless limit of the spin-two theory leads one to 
consider, as well as equation (2.5), the spinor formed by operation on 
Xal&=aa& 4 with p-ra the spinor divergence operator defined by pr& - (i~- V + 

i(O/Ot))Ta. One finds that pva~ X61&2&3&4(x) is directly proportional to the 
first power of the mass of the particle with a coefficient that goes smoothly 
to a finite result in the limit of zero mass. The result is that both Pa~5,~ala2a3a4 
and/n'a~X&~&2&3a4 vanish smoothly as the mass of the particle goes to zero. 

3. Unitary, Spin-Two, Massless FW Operator 
In the limit of zero particle mass the spin-two Hamiltonian given in equation 

(2.3) becomes 

3 They are constructed from the eigenstates of the spin {- polarization operator with the 
usual rules for addition of angular momenta. 
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Ho = Qt.P[{ - 4(et. P)21 +3/ ' [1  - 4 (a .  p)2I [1 - (Qt. P) 2] (3.1) 
Since 

(¢1. V)2 ~/(X) m~0> @(X) (3.2) 

because (,,. [~)2 is the square of the normalized, spin-two helicity operator, 
one sees that in the limit of zero particle mass. 

Ho~(X) -= ~. PC(x) (3.3) 

a simple result which, in fact, is true for all spins and zero masses. By contrast, 
in the limit of zero particle momentum (rest system) the general spin-two 
Hamiltonian assumes the simple form m3. The operator 

U=exp T 

= 24(2) + 1 -  [1 - 4 (~ .  ~')~ ] [1 - (~ .  ~,)~ 1 

+ X/(2)3[~. P + -~ ~.]?[1 - 4(,,. ~,)21 ] (3.4) 

connects the two extreme forms of the spin-two Hamiltonian, i.e. UHo U-I = 
/'3 and it is designated the spin-two, massless FW operator. It is unitary so 
ordinary scalar products retain their values under this transformation. The 
usefulness of this operator transformation is in the simple matrix forms of 
operators such as the Hamiltonian in the 'rest system' representation. It is also 
interesting that one can in a formal way transform a massless particle theory 
to a representation that is most appropriate for massive particles at rest. 

4. Spin-Two, Scalar Elastic Scattering 

Let g denote a massive spin-two particle and (r a scalar particle. Then, for 
the process 

gl(K1) + a l (Ol )  -+g2(K2) + 02(02) (4.1) 

let the four-momentum operator be written asK 1 when it operates on the gl 
field operator, Q1 on al ,  etc. so that the order of derivative factors in the 

-operator, defined in terms of the scattering operator S bv 

S = 1 + i fd4x,~(x)  (4.2) 

may be disregarded. Invariance of the S-operator with respect to space-time 
translations leaves only three of the field operators with independent derivatives. 
They are chosen to be K1, K2 and the symmetric combination Q -~ ½(Q1 + Q2). 
The a-particles are described by the one-component, scalar field operators ~b(1) 
and ~2) ,  which are assumed to be self-charge-conjugate. The massive spin-two 
field operators are X~la2~32~4(1), ~oalC~2c~3a4(1) and Xal~_~_a4(2), ~0& l&2de3d~4(2), 
symmetric spinor pairs. Each pair is coupled by a fourth-eorader wave equation, 
equivalent to equation (2.1) when the Hamiltonian description is used. The 
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symmetry of  the spinors makes the number of  independent component five, 
as seen in equation (2.4), appropriate for a spin-two object. 

Use of the wave equations and the relation 

Ac@I Ba~2 + A ~2Ba¢ 1 = - 2 A  . BS&& (4.3) 

true for any two form-vectors A and B, permit one to eliminate all terms in 
the~-operator  in favor of  those with four or fewer derivatives. Space-inversion 
invafiance further restricts the number of  independent terms. The result for 
the Lorentz invariant, space-inversion covariant, charge conjugation invariant 

~-opera tor  for the elastic scattering of  spin-two bosons and scalar bosons and 
all related processes (g2 4=gl) is 

13 

~'(x) = Y Bi[Ni +NLe]~(1)~(2) (4.4) 
i=1 

• " a e 

where B i are scalar functions of  the independent derlvatwes, nd Ni is the 
charge conjugate of  Ni. In detail, the individual terms are (see footnote 4) 

N1 = X &la2a3a4(1) ~0~1 a2~a~4 (2) + ~°Yl~2"r374 (1) ×7172~a74 (2) 

-- "v . . . .  /I"~{)71 d~l t ' )  " / 2 d c 2 / ) ' ' / 3 ~ 3 { ) ' ) ' 4 ~ 4 v  (2) + 

~I ~ ~ ~071727374(1)QTl&l n . gl • t) & ~ 2 3 4(2 ) 

N 3 = X&1&2&ad4(1)K27&sK'~ al ~o~2~3a4as(2) + 

71%27374 ")'S a . . ~0 (1)K 2 K171aX/273,),47 s (2) 

N 4 = X&~d2da&4(1) QyasK'~ ~1 ~ a2~ac~4~s (2) + 

071727374/I hnTs&v "v (2) 
k )h~ *~ 171¢XA.V2T3747S 

Ns = Xal&:a3&4(1)K27/~s Q~a'  ~ ¢¢2°~30z4as (2) + 

~o~'72~aYs(1)g~sao &X (2) 
71 7 2 " ) ' 3 7 4 7 5  

N6 . . . . . .  /1"~ V q q ~ : l  g l T 2 & 2 / - 1 2 / 3 & 3  f l ' Y 4 ° ~ 4 - ,  (2~ + ~ 0 " / 1 " / 2 7 3 7 4 ( 1 )  
A.OtlOt2a3~.4kl) ' t~ 1 ~ ~5 ~ A 'y I ' , / 273T4" , .  ] 

K I~, a~ QTza~ Q-'/3&3 03, 4&4 ~ ¢  I ~ Z ~ 3 ~ 4  (2) 

N 7 = X&ld2&a&a(I)K'~sI/~'Y2&2t"~T3&a/')74&4v (9"1 + 
-~. ~ : ~  A T1 T 2 7 3 7 4  \ = . t  

. ^71727374{1"~  K , q  13 . / ' )  . ~C~ 1 ~20¢3a4/ ,~ '~  
'4-' ~, .I 271&l~d~3,2&2 ~ , . / 3 ~ 3 ~ : 5 7 4 c t 4 W  ~ Z )  

Ms = v . . . .  { l '~  LZTl&l  k ' 7 2 & 2 t " ) T 3 d 3 0 ' Y 4 & 4 . ,  (")'~ + 
mot i Ot20~3a4k * )*  x / ~tx 1 ~ ~ A. 7 1 7 2 " y  3")'4 \ ~ '  

~0T12"2"!¢374 '( 1 ~K K ,,3 . ./") ^~:t d2&3&4 {Oa 
t ./ 1 T l &  1 172~3 ~,y3~ 3 ~T4&4 W i z , )  

N 9 = v . . . .  / 1 ~  U T I ~ I  /," 'T2~agY)'3~3W/Y4¢~4.. ("7) + 
A.~I ~2oz3a4  k ± )~x 2 -t~2 ~ ~:5 A . T l , Y 2 7 3 7 4  ~ - ,  

,~3q'r2"raY4(l'~K  ̂ . K -  t3  . i'1 . ,t,Otla2Ozaee4(2"~ 
"~" k . '  ZTl~X 1 2,y2&2.~.~Ta~3~,~T4~4'+,  \ j 

4 The Ni are understood to be symmetrized in the usual way to avoid infinites in matrix 
elements• See, for example, the discussion in Sakurai J. J. (1964). tnvariance Principles 
and Elementary Particles, p. 123, Princeton University Press, New Jersey. 
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= v . . . .  : I ~ , K ~ I & ~ 2 & a , q 7 3 6 3 : ~ Y 4 & 4 . .  ¢2~ + Rio Aeqa2c~3ot4'.- J 1 "r~2 ~:5 ~ ;¢.71.),23.3,./4 ~. : 

~ o 7 1 7 2 7 3 ' Y 4 [ l ~ K  K , q  . t ')  . , . ,4142&34412"~ 
k Y 1 7 1 & l  2,y242~,~3T3aa~,~'Y4a4'e ' k / 

. . . .  1 T I & I  72&2 383 74&4 2 + 
N i l  = X a l O t 2 ~ a a 4 (  )K 1 K~ K~[ Q XT1T2-, /374 ( ) 

~o'rtv27aV4(l'IK, , K ,  t9 ~. toSl&2d344(2"l 
. : x 7 1 & l / * 7 2 &  2 a ,ya&3~: '~4~4 r . . . ,  

N12 = Xdt626344(1) K~l~l K~2a2 K~/23~3 Qy4a4X 71y2-r374 ( 2 ) + 
" * 7 1 T 2 T a 7 4 K  • K . K -  . t 9  d ,efflazC~3C~a(2) 
W 1,T1 a l  272oe 2 2730~3~.-'y4 4 r 

N 1 3  = Xd182&a&a ( 1 )  K ~ I  a l  K~I 2a2 K ~ a a a  K ~ 4 a a  X.I172737 4 ( 2 ) + 

~ 0 7 1 7 2 7 3 7 4 K  K K K " i l l  d 2 6 3 d 4 t ' 2 ~ '  (4.5) 
1TI& 1 1 7 2 4 2  2"ya& 3 2 7 4 4 4  W ~. J 

If the initial and finai spin-two particles are identical, one has the following 
relations between the invariants and their charge conjugates 

Nte=Ni,  i = 1, 2, 3, 10, 13 

Nt e =Ni+I ,  i =  4 , 6 , 8 ,  11 

N, e = N i - 1 ,  i = 5 , 7 , 9 , 1 2  (4.6) 

This results in a simplified ~-operator with only nine independent terms. In 
detail, one has in this special case 

9 

~(x)  = ~. AiM/p(1)~2) (4.7) 
/,=1 

where (defining K - ½(K1 + K2)) 

ml  = X~l&243a4(1)~ocq~2%aa(2) + So7"Y273~'4(1)X'yITz73-r4(2) 
M . . . . . .  ( l  ~ /33 ' 1& 1 { 1 7 2 4 2  f ) T s & s  tO'g444 v (2~ + 

2--A.&lO~2o~3a4'v J ~  ~-, ~ ~,~ ~T1T2T3"Y4 ~- : 

. . . .  2 a 4  2 tp,nv2~,374(1) 0 t l a  0~ C~ 
Q T l ~ l  Q"12a2Q'y30taQ'r4o~4~ 0 ( ) 

M a = X41a2&a44(1)K':q QTas~o a2%~4as (2) 

+ . ~ 7 1 7 2 7 3 7 4  ( 1"t K . / ' 3 ~ 5 4 v  ( '~ ]  
"t" ",,* ; "  ~'1'10~:~ A 3 '273"/475 x.~: " 

M 4 = X,~l&2&a44(1)K71°qQ7Za2Q73°~3Q'r4a4X3,1.y23,33,4(2 ) + 
,/YI'Y2"Y3"~4(I'~ g • r) • 0 . 0 • ,,,ala2aac~4(2"~ 
w \ ] 'Y l~ l~ .~ -Y2a2~73a3~-" /4a4" / "  "- ] 

Ms = × ~; s~,~344 ( i ) / ~ =  ~ Kh,4s :'~2~ ~ . ~ s  (2) + 

~oT~TaTaVa(l)Ka.r~aK~S~X72.~3r4.~s(2) 

= . . . .  7 1 8 1  2&2 73&3 "/4°~4 2 + M6 Xala2O~3o~4(1) K K7  Q Q x'rl~2"/s'r4( ) 
,~71"/273"/4(1"~/4" . R" • {} . D • , .-,al°~2¢t3a4(2"t 
'e" ",.* :*~'Yl Ce l -~72a2 r~."13c~3 ~;74ot4 "l " ",..* 

= v . . . .  (l"~,U~ld~llc")[2d2~'~3da[)74d~4v :2a + M7 A-O~la20t30~4\*.tax t "t~'2 ~ ::~ A-"/1~2")'3~¢4"- ..' 

~071V2"/3"/4~'1"~, -- ~ *q . t ')  . ,,~&l&2&36¢4(2"~ 
L )*XlTl&l '~X2, . /2&2~,~Taa3~') '4e¢4"/"  ,v : 
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Ms = v . . . .  (1~/('Yle21 /¢"Y2&2 E'T3&3/')2e4&4., (?~I + 
A ot 10~20t3&4k~) ~x zx ~x ~ A,,/1,,/2 T 3,),4, _ j 

~/)'172"/3"/4/( . /(" • k" . /~ • ,,~1a2c~3c¢4/'9'~ 
~" =~')'10Zl ~ ')'2 cx 2" ~ 3e3c¢ 3 ~3'4°~4 ~ \~2 

M 9  = v . . . .  ( l ~ K 7 1 & l U 7 2 d ~ 2 K 7 3 & 3 K 7 4 & 4 v  (9~ + 
A ~ 1 0 z 2 ~ 3 ~ 4 \  ~ ]  . . . . . . . .  A, .y  1 7 2 7 3 , , , / 4  k - -  ,, 

~713"2"y3"r4(1)K.y16:lK,y2&:2K3,asaK.,t,464~°qa2~3a4(2) (4.8) 

The matrix elements of~/ integrated over all space-time are proportional to 
the usual T-matrix elements, and so all the usual properties of the T-matrix 
elements apply here. 

As discussed in Section 2 the symmetric spinors go smoothly to the 
appropriate massless limit, and their derivatives are proportional to the 
particle mass. So, as the particle mass goes to zero 24r and M 4 vanish as m, 
M s ,  M 6 and M 7 as  m 2,  Ms as  m 3 and M 9 as m 4. It is. ortant to note that 
there are no relations that the invariant amplitudes A i are required to satisfy 
in this limit. The resulting ~-operator  for spin-two "Compton scattering" is 

J / (x)  = A 1 (Xdld 2& 3&4 ( l )  ~ala2a3a4 (2) + h071T273"Y4 (1) X 71"r23'3~/4(2)} ~b(1) q5(2) 

+ A 2(Xst a2&aa4(1 ) Q"rl aa Q~,2a2 Q'y3c~ 3 Q-;¢4o~4 x .,y i .y2.r 3..t4 (2) 

+tp3 ' lvz 'y3~4( l )Q3,1& 1Qv2dzQ.r363Q3,4(~4~0~lc~2~3~4(2)}0(1)(p(2)  (4.9) 

To make the connection with the Hamiltonian formulation, one notes that 

~(2)~(1) ~ ff?(2)/3~(1) 

. . . . . . . . .  i ~  . . . .  = ~0HH(2)Xii i i (1)  + 4~1tt2(2)?(i i i~(1)  + 6~ 01 (2)Xa1~2(I) 

+ 4~222(2)Xi½fi~(1) + ~2222(2)X~2~(1) + X n 11(2)~o ~ ~ ( 1 )  

+ 4X ~ ~2(2)~ ~ ~2(1) + 6X 1122(2)~ ~ ~22(1) + 4X ~ 222(2)~o~222(1) 

+ X 2222(2)  tp2222(1) (4.10) 

and that this expression is identical to M~ taking account of the symmetry of 
the spinors to combine terms. Furthermore, up to an overall scalar factor 

M 2 ~ ~(2)Q~Q~Qo QoTuv~e3'(1) (4.11) 

where 7uvoo are the spin two covariantly defined matrices, the generalization 
of Dirac's gamma matrices (4), (Nelson and Good, Jr., 1968). 
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