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Abstract

Some properties of the Hamiltonian description of free spin-two massive and massless

particles are given emphasizing the connection with symmetric spinors having four free
indices. In addition, the most general scattering amplitude is constructed for the elastic
scattering of massive spin-two particles and scalar particles including the massless limit.

1. Introduction

Weaver, Hammer, and Good (1964) (WHG) have given a Hamiltonian formu-
lation of the theory of a free particle and antiparticle with arbitrary mass and spin
S§=0,4,1,.... The basis of their approach is to represent the spin $ particle
by the (S, 0) and (0, S) representations of the homogeneous Lorentz group.
The usefulness of these representations has been discussed from other points
of view by Joos (1962) and Weinberg (1964), and a review has been given by
Nelson and Good (1968).

To construct the Hamiltonians in WHG, the Foldy-Wouthuysen (FW} trans-
formation (1950) was generalized to arbitrary spin, but in a way that is not
unitary (see footnote 1) except for spin 5. Later Weaver (1968) found a unitary
transformation for spin-1 with many of the properties of the generalized FW
transformation.

Investigating the description of WHG further, Weaver and Fradkin (1965)
showed that the wavefunction, which has 2(25 + 1) components for spin S,
was formed from the independent components of two symmetric spinors,
each with 25 double-valued indices, and related by a spinor wave equation.

The purpose of this paper is to examine explicitly the spin-2 specialization
of the general description including the connection with the symmetric spinors
*Supported by the NSF under grant GP-34629.
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394 D. L. WEAVER

and the massless limit. A further purpose is to construct the scattering amplitude
consistent with Lorentz invariance and invariance with respect to space and time
reflection and charge conjugation for the elastic scattering of massive spin-two
particles and scalar particles, including the massless limit.

In contrast to conventional treatments, the massive spin-two particles will be
represented by symmetric spinor field operators. This simplifies the construction,
particularly the massless limit because no additional constraints (the spin-2
analogue of gauge invariance) need be imposed.

It should be emphasized that there are difficulties in taking the massless
limit when one needs to deal with the nonlinear aspects of the spin two field
found in nature, the gravitational field, but the difficulties do not appear in
the present work (see, for example, van Dam and Veltman (1970), Boulware
and Deser (1972) and van Nieuwenhuizen (1973)).

2. Description of a Spin-Two Particle

Following Weaver et al. (1964) the wavefunction y(x), representing a
particle and antiparticle of mass m and spin-2, is 10-dimensional and satisfies
the wave equation

HYG) =2 4() @0

The units are # = C =1 and X =(X, if). In terms of the momentum operator
P =iV, the energy operator E =+/(P.P + m2) and the 10 x 10 matrices

ot R N

(with S the representation of spin matrices with S5 diagonal) the Hamiltonian
operator H is given by

HJE = tanh[4 tanh™'(P/E)a. P] + § sech[4 tanh™ ' (P/E)a . P]  (2.3)

Note that H is a Hermitian matrix, and that H2 = E2 so that y(x) satisfies the
Klein-Gordon equation for mass m.

With respect to the homogeneous Lorentz group, ¥(x) transforms as the
direct sum of the (0, 2) and (2, 0) representations, corresponding respectively
to symmetric spinors with 4 lower-dotted indices and symmetric spinors with
4 upper-undotted indices. In detail, let ¥ and ¢ be the symmetric spinors
appropriate for spin two objects (see footnote 2). Then, up to factors which
are Lorentz scalars, the wavefunction Y(x) and the symmetric spinors are
related by

Yy =xiiii, W2 =2Xiiis Y3 =V(6)xiizz,  Va=2Xi333,
Wszxiiéi, d/6=(p11115 ‘P7=2‘P1“2, ‘pS:\/(ﬁ)‘pllzzs
Yo =2¢!%%22, Yi0=9"??? (2.4

2 A symmetric spinor with four indices has five independent components and is appro-
priate for describing a spin-two particle.
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In terms of momentum spinors and second-quantized operator coefficients,

the symmetric spinors are given by
1 d*P [E+m+e.P]
Xﬂ1“2&3°<4(x) - (27.()3/2 \/(ZE) [2E + m)) 2 @16
a

[E+m+6.Plos, [E+tmto.Plag, z ugiﬁ2ﬁ3§4(f’, k) x
k=—2

[a(P, K)e* + (=1)"*Tp(P) — k) F-¥] 2.3)

and a similar expression for ¢*1%2%3%4(x) with o . P replaced everywhere by
—o.P.Here 2 and b are, respectively, the destruction and creation operators
for particle and antiparticle; o are the representation of Pauli matrices with

03 diagonal; k is the polarization quantum number, taking on values from —2
to 2 in integer steps, and U(P, k) are the momentum-polarization spinors
appropriate for spin-two (see footnote 3). The Lorentz invariant scalar product
P .xis P.x - Ft. The momentum-polarization spinors have the property

[P to. P]oq B1 [P to. P]Otzﬂg [P * . P]a3ﬁ3 [P te. P]a464UﬁIB2ﬁ3B4(P'k) = 0
(2.6)
unless kK = 12, respectively. This leads, in the limit that the particle mass goes

to zero, to the following pair of symmetric spinors appropriate for describing a
massless, spin-two particle and antiparticle

[E+m+c.P]a253 X

Xdb ydpdrgty (%) = (zﬂ—)lya f B PPV U0, (B 2) (P, ) +

biP. e 2.7
S1%203% () = (—2;;—375 f APPPYI? Uy sy (B ~2) [a(P, —2)P* +

bT(P, 2)e™F*] 2.8)

Being interested in the massless limit of the spin-two theory leads one to
consider, as well as equation (2.5), the spinor formed by operation on
Xty deptizeq With P& the spinor divergence operator defined by P*® =(io- V +
i(3/31))ya. One finds that Pré X dyétpdiying () is directly proportional to the
first power of the mass of the particle with a coefficient that goes smoothly
to a finite result in the limit of zero mass. The result is that both Py, ;¢%1%2%3%4
and PT™ X 4,440, vanish smoothly as the mass of the particle goes to zero.

3. Unitary, Spin-Two, Massless FW Operator

In the limit of zero particle mass the spin-two Hamiltonian given in equation
(2.3) becomes

3 They are constructed from the eigenstates of the spin L polarization operator with the
usual rules for addition of angular momenta.
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Ho= a.P[} —4(a. P’ +6P[1 — 4(«. P*1[1 — (. P)?]  (3.1)
Since
(o Y2 () ™= () (32)

because (a. P)? is the square of the normalized, spin-two helicity operator,
one sees that in the limit of zero particle mass.

Hoy(x) = a. Py(x) (3.3)

a simple result which, in fact, is true for all spins and zero masses. By contrast,
in the limit of zero particle momentum (rest system) the general spin-two
Hamiltonian assumes the simple form mg. The operator

U=exp F} a. Pg+ g(a'i’)e’ﬁ}

N SN PR T P B\2111 (0 P12
\/(2)+ (1 \/@)[1 Ha.P)?1[1 — (a. P)?)
+(2)B[ee. P+3 aP[1 — 4(a.P)?]] (3.4

connects the two extreme forms of the spin-two Hamiltonian, i.e. UH U™} =
PBand it is designated the spin-two, massless FW operator. It is unitary so
ordinary scalar products retain their values under this transformation. The
usefulness of this operator transformation is in the simple matrix forms of
operators such as the Hamiltonian in the ‘rest system’ representation. It is also
interesting that one can in a formal way transform a massless particle theory
to a representation that is most appropriate for massive particles at rest.

4. Spin-Two, Scalar Elastic Scattering

Let g denote a massive spin-two particle and o a scalar particle. Then, for
the process

&1(K1) +01(0) > 82(K2) + 0,(Q2) (4.1

let the four-momentum operator be written as K 1 when it operates on the g,
field operator, Q; on oy, etc. so that the order of derivative factors in the
Z-operator, defined in terms of the scattering operator S by

S=1+i[d*%2R(x) 4.2)

may be disregarded. Invariance of the S-operator with respect to space-time
translations leaves only three of the field operators with independent derivatives.
They are chosen to be K, K, and the symmetric combination Q = 3(Q, + Q5).
The g¢-particles are described by the one-component, scalar field operators ¢(1)
and ¢(2), which are assumed to be self-charge-conjugate. The massive spin-two
ﬁeld Operat()rs are Xdlézdsdq,(}‘), ¢a1a2a3a4(1) and XQI&QOC30£4(2)$ (’odlagagdz,;(z),
symmetric spinor pairs. Each pair is coupled by a fourth-order wave equation,
equivalent to equation (2.1) when the Hamiltonian description is used. The
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symmetry of the spinors makes the number of independent component five,
as seen in equation (2.4), appropriate for a spin-two object.
Use of the wave equations and the relation

Aag, B + 4%%2B5 = —24 By 5 (4.3)

true for any two form-vectors 4 and B, permit one to eliminate all terms in
the # -operator in favor of those with four or fewer derivatives. Space-inversion
invariance further restricts the number of independent terms. The result for
the Lorentz invariant, space-inversion covariant, charge conjugation invariant
AR -operator for the elastic scattering of spin-two bosons and scalar bosons and
all related processes (g, #g1) is

Be)= 3 BN, + N1 44)
i=1

where B are scalar functions of the independent derivatives, and Ni© is the
charge conjugate of V;. In detail, the individual terms are (see footnote 4}

Ny = Xd1d2&3d4(1)80d1&2d3&4 (2) + ¢71727374(1)X,},17273y4(2)
Ny = Xd1fxzée3d4(1)Qﬂdl Qn&sz3d3Q74&4X V1727374 @+
PTIT(1)Q 4 Q72a2Q73d3Q74d4¢d1&2d3d4(2)
N3 = Xaydgoga (DK e KTH1 65253%85(2) +
¢71727374(1)K;YSQK17 15‘Xl'2’¥3‘/475(2)
Ny = Xay dpaigaq (1) Qe K71 0%2%3% %5 (2) +
¢71727374(1)Q75@
Ns = Xy dgaza, (DK 27a5Q7d‘s0d2d3é‘4d5(2) +
‘P% 127375 ( DK%S&Q 116X v2v37475 (2)
N = Xeiyagaaaa (DK QT2 Q13580740 o (2) + 71 T27375(1)
KlvléqQ'fz% Q363 Q74d4¢a1d2d3&4(2)
Ny = Xiydnigsa(DKF1QU202QV3% g %y (D)
PTI2V3V()K 271641Q720?2 Q”/sds Q’mdm ¢d1dzd3d4 2
Ng= Xd.d2&3d4(1)K71&1KY2d2 Q73d3Q74d4X71727374(2) *
Y17273%4(1) Kl'Yldl Klnds Qa3 Oryatig ¢d1d2d3&4(2)
No = Xoqnigiq(DKPUIKRIQY0Q 8%y o (2) +

55?17273?4(1}K2715‘1K272d2Q’Y35‘53 Q‘Y‘;dq@amzo&sm&(z)

K171"¥X72’Ya’¥475(2)

4 The N; are understood to be symmetrized in the usual way to avoid infinites in matrix
elements. See, for example, the discussion in Sakurai 1. J. (1964). Invaeriance Principles
and Elementary Particles, p. 123, Princeton University Press, New Jersey.
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Nip™ Xdlézdfséf«a(I)K}(lalK32Q2Q73Q3Q74a4x’¥1’¥2'¥3?4(2) * L
i “/273’74(1)](171&1](2720_‘2 Q73d3Q74d4¢011052013“4(2)
Nll = XOL 1022023024(I)K’{lalK’{zaZKzsasQ74a4x71727374(2) +
g0’7172’)'3’/4(1)1(1,yl ‘351K1‘?‘2022K273dz3Q’y4d480a1a2a3a4(2)
N12 = Xd1d2d3d4(1)K}’lalKZZGZK'%3&3Q74&4X71727374(2) + L
@71727374](171&11{272022 K273d3Q74d4¢0410¢206 3% (2)
N13 = Xd1d2d3d4(l)K’{laIKY2a2KZBa3Kz4a4X7172’y3‘y4(2) ‘+

o1 7273741(17'10?1Kl?zdezﬁ'sdszzm% P1%2%3%4(2)  (4.5)

If the initial and final spin-two particles are identical, one has the following
relations between the invariants and their charge conjugates

NE=N;, i=1,2,3,10,13
Nf =Njs1, i=4,6,8,11
Nf=N;_y, i=5,7,9,12 (4.6)

This results in a simplified Z-operator with only nine independent terms, In
detail, one has in this special case

9
R(x) = 21 AMp(1)(2) 4.7

where (defining K =4(K; + K3))
My = Xayipania (D9719253%4(D) + @T2V34(1) Xy 1131, (2)
My = Xayay50,(1) QT Q02 gM0 QM%)+
GNYYY4(1) Q. 61 Oy Oy sis Qrvacia Y1624 394 (9)
M = Xay i (DK ™1 Qrag0™293%4%5(2)
VT DK 160" Ky vays (2)
My = Xayananag (DKTI91 Q20207898800 (D) 4
QT1727374(1) Koyy6y Orpiy Oy 3630 vada wd1d2d3d4 )
Ms = Xayapasaq (DKT 1K, 4 ¢7293%%5(2) _
&p7 1’}'27374( 1)1{1 716;1(%5&)(‘72‘737475 (2)
Mg = Xd1d2d3d4(1)K71d1 K72d2 Q%%Q”mda X117v2v37a )+
$T1Y27374( 1) K’?l é K72d2 Q»,30'53 Q’¥4d4 S0(5L1t>'z2<n'z3<>24 (2
M = Xayapasaa (DKPUKPE2QV3%Q08%y s ora(D) +

GYIT2Y3VA(1)K vy K272d2 Qryzi3Oraia GA18283% ()
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=ya o o V1% 128 g vsds vad
My = Xy paqag (DKM K2 KISR0V yis (D F

pY172Y374 K«/ldl dezéfz K?sds Qudﬂa ¢“1“2°43a4 2
My = onlo'z2o£3d4(1)K”alK”azK73&31{74%)(»”727374(2) +

¢7‘7”374(1)K71QIK72Q;2K7 K74d4go°“°‘2°‘3a4(2) (4.8)
The matrix elements of % integrated over all space-time are proportional to
the usual T-matrix elements, and so all the usual properties of the T-matrix
elements apply here.

As discussed in Section 2 the symmetric spinors go smoothly to the
appropriate massless limit, and their derivatives are proportional to the
particle mass. So, as the particle mass goes to zero M. and M, vanish as m,
Mg, Mg and M, as m2?, Mg as m3 and Mg asm®. It is. ortant to note that
there are no relations that the invariant amplitudes A; are required to satisfy
in this limit. The resulting #-operator for spin-two “Compton scattering” is

R(x) = A1 Xy aigai g (1) @19293%4(2) + @V 727374(1) 30, o0 (21(1)(2)
+ A2 (X, dpigig () QIS QT2 QY gYe0y - (2)
F PO ) Oy Oryady Oryaig #19293%4(D) 10(1)9(2) (4.9)
To make the connection with the Hamiltonian formulation, one notes that
VWD) = yT(2)pY(1)
= @i (1) + 40122 x50 + 6011 2@)x3133(1)
+ 4012 x 333D + 0222 x3355(D) + X111 (D01 (1)
+4x 11120200 T3(1) + 6X 112220 PH1) + 4x 122229 22(1)

+ X 2222(2)*222(1) (4.10

and that this expression is identical to M, taking account of the symmetry of
the spinors to combine terms, Furthermore, up to an overall scalar factor

My~ ’;5(2)Q,uQva Qo')’;.zvpa'}’(l) (4.11)

where 7,0 are the spin two covariantly defined matrices, the generalization
of Dirac’s gamma matrices (4), (Nelson and Good, Jr., 1968).
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